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ON THE COMBINED PERFORMANCE OF NON-LOCAL ARTIFICIAL BOUNDARY
CONDITIONS WITH THE NEW GENERATION OF ADVANCED MULTIGRID FLOW

SOLVERS*

T. W. ROBERTS t, D. SIDILKOVER t, AND S. V. TSYNKOV§

Abstract. We develop theoretically and implement numerically a unified flow solution methodology

that combines the advantages relevant to two independent groups of methods in CFD that have recently

proven successful: The new factorizable schemes for the equations of hydrodynamics that facilitate the

construction of optimally convergent multigrid algorithms, and highly accurate global far-field artificial

boundary conditions (ABCs). The primary result that we have obtained is the following. Global ABCs do

not hamper the optimal (i.e., unimprovable) multigrid convergence rate pertinent to the solver. At the same

time, contrary to the standard local ABCs, the solution accuracy provided by the global ABCs deteriorates

very slightly or does not deteriorate at all when the computational domain shrinks, which clearly translates

into substantial savings of computer resources.

Key words, factorizable scheme, pressure-Poisson formulation, multigrid methods, compressible flow,

incompressible flow, conformal mapping, Fourier transform, mode selection, conservation on the grid, optimal

convergence rate, exact solution, error profiles

Subject classification. Applied and Numerical Mathematics

1. Introduction. The subject of this paper is development of the joint formulation, combined im-

plementation, and subsequent performance assessment for the exact nonlocal far-field artificial boundary

conditions (ABCs) coupled with the new generation of multigrid flow solvers based on factorizable schemes

for the equations of hydrodynamics. Both methodologies have independently proven efficient and promising

for the numerical solution of different flow problems and thus it appears natural to try and analyze their

performance if combined with one another. Accordingly, we organize the material as follows. First, we

briefly review relevant results in the two aforementioned independent areas: Flow solvers and ABCs, and

then formulate the motivation and objectives for the current study. Next follows the core of the paper --

description of the algorithm and the set of numerical experiments. Finally, we discuss the results that we

have obtained, as well as possible extensions for the future.

1.1. Background on the scheme. To emphasize the advantages of the new generation of flow solvers

that emerge nowadays, we first briefly review the history of developing the numerical methods for compress-

ible flow computations.
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The Full-Potential equation is one of the simplest mathematical models describing the compressible fluid

flow phenomena. Active research on numerical methods for solving this equation has begun in the early 70's

with the work of Murman and Cole [1]. Numerical schemes were developed for two- and three-dimensional

cases. Some research has also been done on applying the multigrid methods as a means to accelerate the

convergence to steady state.

The Euler equations constitute a more general model for the fluid flow since they account for the ad-

vection of vorticity and entropy as well. The first rather emcient method for the steady-state computations

using Euler's equations was developed in early 80's by Jameson and co-authors [2, 3]; it still remains (with

some modifications) widely used in modern computational practice. However, there was no obvious con-

nection between this new Euler solver and the previously used Full-Potential solvers. The research on the

Full-Potential solvers was effectively abandoned in its infancy in favor of the solvers for the Euler equations.

On the other hand, it is becoming increasingly clear nowadays that the methods currently used for

the steady compressible Euler (and Navier-Stokes) computations have severe limitations in terms of both

computational efficacy and robustness.

A major difficulty for the numerical treatment of compressible flow is the possible presence of shocks in

the solution. It is well known that a scheme, which is both second order accurate and avoids undershoots

and overshoots near discontinuities (which may trigger nonlinear instability), has to be nonlinear. Such

a scheme has to incorporate the so-called high-resolution mechanism, i.e., a smoothness monitor, that is

usually implemented in the form of a flux limiter. Initially, the schemes of this type were developed for

one-dimensional case. Then, they were extended to multiple dimensions using a dimension-by-dimension ap-

proach. However, these straightforward multidimensional extensions of high-resolution schemes have proven

ineffective when applied for calculating the steady-state aerodynamic solutions, which are of great interest

for applications. It turns out that the standard multidimensional high-resolution discretizations (obtained

by a dimension-by-dimension extension) suffer from the following deficiency: The contribution of the high-

frequency error components to the residuals of the discrete equations is very small, which translates into

the poor stability characteristics of the steady-state discretization. This makes the construction of a good

relaxation scheme, in particular, smoother for a multigrid procedure, inherently difficult, if possible at all.

For example, Spekreijse [4] had observed that the Gauss-Seidel relaxation was unstable when implemented

along with such schemes. Thus, the multigrid methods based on the Gauss-Seidel relaxation could not be

used to accelerate the convergence to steady state. Instead, the multigrid solvers designed for routine use had

to resort to a defect-correction technique or multistage Runge-Kutta relaxation, and as such their efficiency

was relatively poor.

A genuinely multidimensional advection scheme was constructed in [5, 6]. The scheme was named "gen-

uinely multidimensional" since it imitates well the anisotropy of the advection phenomena in two dimensions:

The artificial dissipation is added only along the streamline, while the high-resolution mechanism affects sig-

nificantly the cross-flow direction only. A key feature of this scheme is its two-dimensional limiter, i.e., the

limiter-function of an argument that is the ratio of divided differences in two different coordinate directions.

The scheme was formulated in the control-volume context for Cartesian grids and relied on the compact

9-point-box stencil. The fundamental advantage of this approach is that the two-dimensional high-resolution

mechanism does not damage the stability properties of the steady-state discretization.

Generalization of these ideas to the systems of equations was not straightforward and took substantial

time and effort. A generalization of this type that yields a robust scheme for the Euler equations, which is

suitable for the computations of a wide range of flow regimes, was presented in [7]. Later it was described in



moredetail,includingtheimplicationsfor multigridandthree-dimensionalextensions,see[8]and[9].The
keyideawasnot to try anddirectlyapplythescalaradvectionschemeto the caseof systems,but rather
startfromthescratchanduseforthesystemsthesamestrategythatwasemployedto constructthescalar
scheme.Theresultingschemefor theEulerequationswasshownto generateaverygoodqualitysolutions
for subsonic,transonic,andsupersonicregimes.A manifestationof "thegenuinemultidimensionality"of
thisschemewasrotationally-invariantformofits artificialdissipation.

Asin thescalarcase,thefundamentaladvantageoftheapproach[7-9]isthat itshigh-resolutionmecha-
nismdoesnotdamagethesteady-statestabilitypropertiesofthescheme.Similarlyto thescalarcase,it was
demonstratedin [8,9]that theGauss-Seidelrelaxationisstablewhenapplieddirectlyto theresultinghigh-
resolutiondiscretizationofthehyperbolicsystems.Thisyieldsaverysimple,efi3cientandrobustmultigrid
solverforthecompressibleEulerequationssuitablefortheentirerangeofflowregimes.

Besidestheaforementioneddifi3cultiesin theiterativesolutionof thesteady-stateflowequationsthat
originatefromthepoorsensitivityof theresidualsto thehigh-frequencyerrorcontent,andthat havebeen
largelyovercomeby introducingthe genuinelymultidimensionalschemes,multigriditerativesolversare
proneto deficienciesof a differentnaturethat canhamperthe performanceevenif a goodsmootheris
available.Asoutlinedin [10],fortheadvectiondominatedproblemsthecoarsegridprovidesonlyafraction
of the neededcorrectionfor certainerrorcomponents.Unlikethepreviousfrequency-baseddescription,
thistimethe "problematic"contributionsto theerroraretheso-calledcharacteristiccomponents,see[10]
(frequency-wise,theyaretypicallymid-range).Ontheotherhand,it iswellknownthat thesteadyEuler
equationscanbe factoredinto the advectionandFull-Potentialparts;the latter is of eitherellipticor
hyperbolictypedependingontheflowregime(subsonicor supersonic,respectively).Theaforementioned
difi3culty(insufi3cientcoarse-gridcorrectionsforcharacteristicerrorcomponents)canbeavoided(see[10])
byconstructinga solverthat distinguishesbetweenthedifferentfactorsofthesystemandtreatseachone
appropriately.In thesubsoniccase,for instance,theadvectionfactorcanbetreatedbymarchingandthe
ellipticfactor-- bymultigrid.Theefi3ciencyofsuchanalgorithmwillbeessentiallythesameasofamultigrid
solverappliedto theellipticpartonly.Suchalgorithmsarereferredto as"essentiallyoptimal."Anapproach
to separatingtheco-factors-- theso-calledDistributiveGauss-Seidelrelaxation-- wasproposedin [10].It
wasdemonstratedin [11]thatusingthisapproachonecanobtainanessentiallyoptimalmultigridefi3ciency
fora staggered-griddiscretizationof the incompressibleNavier-Stokesequations;a similarobservationwas
madeearlierin [12].

Anotherway (alternativeto the DistributiveGauss-Seidelrelaxation)towardexploitingthe ellip-
tic/hyperbolicdistinctionin thegoverningequationsandthusachievingthe optimalmultigridefi3ciency
isbasedonthewell-knownpressureformulationoftheEulerequations,whichalsoamountsto thefactor-
izationofthesystemintotheellipticandadvectionparts.A particularformulationoftheschemeandthe
correspondingmultigridalgorithmthat employthis ideawasproposedin [13].Thisapproachwasfurther
generalizedin [14];work[14]alsocontainsanextensivesetof numericalcomputationsandmoredetailre-
gardingthe implementationof the scheme.Themainadvantageof thisapproachis its simplicity,it can
alsobeclassifiedasWeightedGauss-Seidelrelaxation[10].Subsequentworkin thisdirectionispresented
in [15,16].Thelimitationofthisapproach,however,isthat it isnotclearasofyetwhetherornot it canbe
generalizedto thecaseof viscous compressible flows.

It, however, turns out, see [17], that the idea of factorization that has successfully led to the construction

of essentially optimal multigrid solvers in [10-16] cannot be applied to an important class of schemes that is

routinely used for compressible flow computations -- the shock-capturing schemes of all types, including the



originalformulationofgenuinelymultidimensionalscheme,see[7-9].Astheseschemespossessacollectionof
featuresthatcannotbeeithercompromisedortradedforincomputationalpractice,primarilythemechanism
forhandlingdiscontinuoussolutions,thereisaneedfordiscretizationthatwouldratheraddthecapabilityof
factoringthegoverningPDEsto theexistingpropertiesofthescheme.Ashasbeenpointedoutin [17],there
isacertainfreedomin thewayhowthemultidimensionalcorrectionsarebuiltforgenuinelymultidimensional
schemes[7,8]. Theseextrafreedomcanbeusedto maketheresultingschemealsofactorizable, i.e., make

it capable of reflecting the mixed nature of the governing PDEs. This means that the co-factors of the

different type can be distinguished directly at the discrete level (while still keeping the multidimensional

shock-capturing property). This, in turn, facilitates the construction of an optimally efficient multigrid

solver through the design of a special Distributive relaxation. The scheme of this type was described in [18]

with the emphasis on the subsonic case. The construction was later extended to the case of three spatial

dimensions [19] and generalized coordinates [20]. Extending the approach to the transonic and supersonic

regimes is underway.

1.2. Background on the ABCs. Artificial boundary conditions furnish a widely used approach for

the numerical treatment of boundary-value problems initially formulated on unbounded domains. These

boundary conditions are typically set at the external boundary of a finite computational domain once the

latter is obtained from the original unbounded domain by means of truncation. Implementation of the

ABCs completes the "truncated problem" and therefore, makes it available for solution on the computer.

Different authors have repeatedly shown both theoretically and experimentally that the overall accuracy and

performance of numerical algorithms, as well as interpretation of the results, strongly depend on the proper

treatment of external artificial boundaries.

The choice of the ABCs is typically not unique. Clearly, the minimal necessary requirement of the ABCs

is to ensure the solvability of the truncated problem. However, meeting this requirement only does not guar-

antee that the solution found inside the computational domain will be anywhere close to the corresponding

fragment of the solution to the original (infinite-domain) problem. Therefore, we must additionally require

that the two solutions be in a certain sense close to one another on the truncated domain. Ideally, these two

solutions coincide, which corresponds to the so-called exact ABCs.

It turns out that in most cases, the exact ABCs are nonlocal, for steady-state problems in space and

for time-dependent problems also in time. Besides, many methodologies for obtaining exact ABCs lack geo-

metric universality as they rely on integral transforms along the boundary and the separation of variables.

In practical computing, the aforementioned nonlocality of the exact ABCs is often translated into cumber-

someness and high computational cost. Thus, along with the accompanying geometric restrictions, it may be

regarded as a serious limitation. The alternative is provided by various approximate local methods, which

typically meet the other usual requirements of the ABCs besides minimization of the error associated with

the domain truncation. These other requirements are low computational cost, geometric universality, and

implementation without difficulties. Still, the basic trend in terms of accuracy remains the following: Higher

accuracy for the boundary procedure requires more of the nonlocal nature of exact ABCs to be somehow

taken into account.

In fact, almost any numerical algorithm for setting the ABCs can be thought of as a compromise between

the two foregoing groups of requirements that in a certain sense contradict one another. Shifting the balance

towards locality and practical efficacy often implies insufficient accuracy; shifting it to the other end, towards

highly accurate nonlocal techniques, may often yield cumbersome and all but impractical algorithms. It is

not surprising, therefore, that the treatment of external boundaries in modern production computations



typicallyfollowsthefirst, local,path. In computational fluid dynamics (CFD), for example, only a few

ABCs' methodologies out of the wide variety proposed to date can be regarded as commonly used tools.

All of them are either based on essential model simplifications, e.g., local quasi-one-dimensional treatment

in the vicinity of the artificial boundary, or obtained as a localization of some nonlocal ABCs. To meet the

overall accuracy requirements when using such simple boundary procedures, one often has to use excessively

large computational domains.

An indepth review of different ABCs' methodologies that have been published in the literature over

the recent years is available in the paper by Tsynkov [21]. Besides the general review, in this paper we

focus on the group of approaches associated with the generalized potentials of Calderon's type and the

difference potentials method (DPM) by Ryaben'kii [22-24]. The application of the DPM provides a new

and very powerful vehicle for developing ABCs in different settings. In the framework of the DPM, the

boundary conditions are obtained using the equivalent boundary parameterization of the entire variety of

exterior solutions; the latter parameterization is built with the help of the so-called generalized Calderon's

boundary projections. The DPM-based boundary conditions are usually global. However, when applied,

e.g., to solving the steady-state external problems in CFD, they combine the advantages relevant to both

global and local methods. In other words, the principal gain from using the DPM is that the method allows

one to simultaneously meet the high accuracy standards of the ABCs and the requirements of geometric

universality and easiness in implementation. In addition to the review [21], there are original publications on

the DPM-based ABCs, we mention here only those closely related to the steady-state compressible viscous

aerodynamics, see [25-33].

The DPM-based ABCs have been implemented along with the NASA-developed multigrid flow solvers in

both two and three space dimensions. The investigated flow regimes range from the very low (incompressible

limit) to transonic speeds, include different geometries, laminar and turbulent cases, and sometimes, relatively

complex flow phenomena, like shock-induced separation and jets. Compared to the standard local boundary

conditions, the DPM-based ABCs provide for much better accuracy and substantially smaller computational

domains, significantly faster multigrid convergence [32], and improved robustness of the overall numerical

procedure. We particularly emphasize the improved combined performance of global ABCs and multigrid

flow solvers as similar behavior has also been observed by other authors [34-38].

In fact, the effect of convergence acceleration when the multigrid algorithm is supplemented by global

ABCs [32] was a part of the reason for conducting the current study. Of course, there are significant

differences. In our previous work we have used production flow solvers that by themselves have room for

improving the performance, at least from the theoretical standpoint. In this work, we use the solver that has

already been optimized for performance and thus its convergence rate cannot be improved. Therefore, we

primarily aim at demonstrating the possibility to significantly reduce the size of the computational domain

(and consequently, the grid dimension) while maintaining the solution accuracy, as well as optimal multigrid

convergence rate.

1.3. Motivation for the current study. As outlined above, the new factorizable schemes and cor-

responding multigrid solvers, as well as global DPM-based ABCs, have independently demonstrated per-

formance superior to that of the standard methodologies in various settings. Besides, in many cases the

application of global ABCs has helped to speed up the multigrid convergence. Therefore, it seems most nat-

ural to try and combine the two techniques -- factorizable discretizations with advanced multigrid and global

ABCs -- with the hope of obtaining a joint methodology that would on one hand be capable of producing

accurate flow solutions on domains of substantially reduced size (compared to what the standard methods



allow,see,e.g.,[26,31])andontheotherhand,will nothampertheunimprovablemultigridconvergence
ratedisplayedbythenewtypeofsolvers[14-16].

1.4. Specificobjective. Usingthe simplestexistingversionsof boththe factorizableschemeand
nonlocalboundaryconditionsasa testingground,weintendto thoroughlyworkout all thedetailsof
mergingthetwomethodologies(fromtheoreticalissuesto the implementation)andthenexperimentally
studytheoverallperformancefor a seriesof simpleproblemsthat allowfor a directcomparisonwith the
exactsolution.Weemphasizethat "thesimplestexistingversions"doesnotalwaysmeanthelatestmost
universalandadvancedones,but ratherthosethathavebeentestedandthatmosteasilylendthemselvesto
theanalysisbyanalyticalmeans.Specifically,weemploytheso-calledpressure-Poissonformulationof the
factorizablescheme[14-16]forcalculatingthetwo-dimensionalinviscidincompressiblefluidflowaroundan
airfoil. Analyticalsolutionsfor suchflowsarereadilyavailablethroughtheuseof theconformalmapping
technique.Theglobalexactartificialboundaryconditionsarealsoconstructedsemi-analyticallyby means
oftheconformalmappingandFouriertransformalongtheboundary,withnoexplicituseoftheDPM.The
DPMitselfwillbeusedat a laterstage,whentheboundaryconditionsofthesamequalityarerequiredfor
morecomplexsettings.

2. Description of the algorithm.

2.1. Discretlzatlonof the equationsand multlgrld algorithm. Thealgorithmusedhereisbased
ona specialformulationoftheflowequationsthat involvestheso-calledPressurePoissonEquation(PPE).
Theinitialversionofthealgorithmwaspresentedin [13].ThePPEwasderivedonthedifferentialleveland
thendiscretized.Sowerethecorrespondingboundaryconditions.It wasrealizedlaterthat derivingthe
discretePPEdirectlycansimplifygreatlythetreatmentoftheboundaryconditionsandalsointroducesome
desirablefeaturesinto thescheme(likeacertainconservationpropertythat appearedto becrucialfor the
purposeofthecurrentwork,seeSection2.2.1).Thisalgorithmisdescribedin detailfor bothunstructured
triangularandstructuredquadrilateralgridsin [15].Computationalresultsobtainedwith this algorithm
havebeenpresentedpreviouslyin [14,16].In thecurrentwork,onlystructuredgridshavebeenused.Since
somefeaturesofthediscretizationappearedto becriticalforthepurposeofthiswork,namely,constructing
theglobalABCsthat allowto maintaintheoptimalconvergenceratesofthealgorithm,weshalldescribethe
discretizationschemeandthealgorithmin detail.ThediscretizationisbasedontheincompressibleEuler
equationsin primitivevariables:

Ou Ou Op

Ov + v_y + Op =0,

Ou Ov

o +N =0,

where u and v are Cartesian components of the velocity vector u in the x and y directions, respectively,

and p is the pressure. The density is taken to be one. The Euler equations can be written in the vector form

as follows:

(u • grad )u + gradp = 0, (2.1a)

div u = 0. (2.1b)



WeshallnowderivethePPEformulationof theequations.Wesubtractfromthemomentumequation
(2.1a)thevelocityvectortimesthecontinuityequation(2.1b)andapplythe divergenceoperatorto the
result:

div (gradp+ (u. grad)u- u div u) = 0.

The previous equation obviously reduces to

Ap = f = -div ((u. grad)u - u div u). (2.2)

The PPE formulation of the Euler equations is given by replacing the continuity equation (2.1b) by equation

(2.2), i.e., by using the system (2.1a), (2.2) instead of system (2.1a), (2.1b); this replacement is obviously

equivalent.

The reason for introducing the new PPE formulation is that once we formally consider the transport

coefficients in the momentum equation constant, i.e., use the equation

(a. grad)u + gradp = 0, (2.3)

where a = const, instead of (2.1a), then equation (2.2) becomes a Laplace equation

Ap = -air ((a. grad)u - adiv u) = 0 (2.4)

and decouples from the rest of the system. The momentum equation (2.3) can be looked at as a standard

advection equation with known forcing function (pressure gradient). We emphasize that in this constant-

coefficient case the right-hand side of equation (2.4), i.e., the term -div ((a. grad)u - a div u), is equal to

zero no matter what the actual value of div u is. This property is crucial for solving discretizations because

on the discrete level the value of div u is typically of the order of truncation error and not exactly equal

to zero; moreover, when solving a discretization by an iterative scheme, initially the value of div u may

simply be far away from zero. Note that in the general nonlinear case, for slowly varying velocity fields u

(as opposed to constant a), the terms on the right-hand side of equation (2.2) can still be considered small

(more precisely, of a lower order compared to the Laplacian) and thus regarded as subprincipal. Therefore,

the coupling they introduce is weak, and consequently, equation (2.2) can be considered decoupled from the

rest of the system for the purpose of constructing the relaxation procedure.

We shall now discuss the issue of the boundary conditions for the pressure. The order of the PPE

system (2.1a), (2.2) is higher (by one) than that of the original system (2.1a), (2.1b). Therefore, to ensure

the well-posedness of the boundary-value problem, an extra boundary condition for the pressure is required.

However, the new problem should still be equivalent to the original one. This implies that this additional

boundary condition needs to be derived from the boundary conditions specified for the original problem and,

possibly, differential equations of the original system.

Consider a domain f with the boundary Off. Integrating equation (2.2) over f and applying Gauss'

theorem, we obtain

f/air (gradp + (u. grad)u - air u)dx dy =u

f)

f(gradp + (u. grad)u - air = 0, (2.5)u ) ndsu

o_



where n is a unit vector normal to the boundary and s is the arc length of 0_. A sufficient condition for

equality (2.5) to hold is that at the every point (x, y) E 0_ the following is true:

(gradp + (u. grad)u - udiv u)n = O. (2.6)

We emphasize that as we essentially require in (2.6) that the overall normal flux be zero at every point on

0_, then we do not need to distinguish ahead of time between the outward and inward normals. In fact, it

will be convenient to assume that the normal is always directed toward the center of curvature of 0_, this

will allow us to use the Frenet formulae (see below).

Introducing a local orthonormal coordinate frame (n, s), where s is a unit vector tangent to 0_, and

the corresponding components un and us of the velocity vector, we can rewrite equation (2.6) as follows

Op_

On ((u. grad)u),, + undiv u (2.7)

=(u. (u. grad)n) + undiv u.

Relation (2.7) specifies a general Neumann-type boundary condition for the pressure. If, for example, a

particular portion of the boundary under consideration OfF is a solid wall, then from the so-called tangency

boundary condition for velocity: u_ 10_' = 0, we obtain

_On _ lul =
On019 _ (u. (u. grad)n) = us((u, grad)n)s = us Os 74 '

where 74 = 74(s) is the curvature radius of 0_ t. Note, to obtain the last equality in the previous chain

we have used the Frenet formulae for plane curves.

condition

Op
On

Clearly, the physical interpretation of the boundary

lul 2

74
(2.8)

is that the normal acceleration of the fluid particles moving tangentially to the wall is directed along the

normal n, i.e., toward the center of curvature, and equal to the local, i.e., instantaneous, centripetal ac-

celeration. This is because the momentum equation projected onto the normal direction would read that

the acceleration of the fluid particles is equal to the minus normal pressure gradient. For a straight wall,

boundary condition (2.8) obviously reduces to the zero Neumann boundary condition for the pressure:

Op
--0.

On

Let us now turn to building the discrete scheme. The momentum equations are discretized using a

standard first-order upwind-difference approximation to the advection operator and a second-order central-

difference approximation to the pressure gradient. To prevent the resulting discretization from degeneration

near stagnation points or across streamlines aligned with the grid, a regularizing artificial dissipation term

is used. Considering the term u °u in the x-momentum equation, the difference operator isOx

cOhu 1

u cox -- 2h (u,_+i/2,j - P,m+i/2,j)(Um+i,j - Urn,j)

1
-'_-_(Um--1/2,j + Pm--1/2,j)(Um,j -- Um_l,j) ,



where the superscript h denotes the discrete approximation to the corresponding differential operator, the

quantities Um4-1/2, j are average velocity components given by

1
Urn+l�2, j : 2 (Um+l,J q- Urn,j) ,

1
Urn_l�2, j : _(Um,j q-Um--l,j) ,

and P,_+I/2,j are artificial viscosity coefficients. Analogous expressions can be written for other operators:

v °hu u°_, and v °by The artificial viscosity coefficients Pm-bl/2,j are defined as
Oy ' Oy "

Pm4-1/2,j : max (_AUm+I/2,j, lU_±l/2,jl),

where

AUm+l/2,j : (Um+l,j -- Urn,j),

AUm-1/2,j : (Um,j -- Um-l,j),

and # k 1/2 is an adjustable coefficient, taken to be 0.7 in the current work. This form of the artificial

dissipation was presented in [16].
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FIG. 2.1. Computational grid segment and a control volume.

The discretization of the Pressure Poisson Equation is based directly on the integral formula (2.5), where

the domain f_ is taken to be the control volume Am,j with the boundary OAm,j (see Figure 2.1):

f (gradp+ (u. grad)u - --- O. (2.9)u div u) nds

OAm,j

Breaking the boundary of the control volume 0A,_,j into four parts: "south," "north," "east," and "west"

faces, we can rewrite (2.9) in the following form:

h[(Fm+l/2, j - Fm_l/2,j) + (Gin,j+1� 2 - Gin,j_1�2) ] : O,



where h is the mesh size, Fro+l�2, j are the east and west fluxes, and Gin,j4-1� 2 are the north and south fluxes

through the faces of the control volume Am,j. The fluxes, in their own turn, are evaluated using the midpoint

quadrature:

Fm-i/2,j =h[(Pm,j -- Pm-i,j) "+ Vm-i/2,j (Um-i/2,j+i/2 -- Um-i/2,j-i/2)

--Um_l/2,j(Vm_l/2,j+l/2 -- Vm_l/2,j_l/2) ]

Gin,j-i�2 =h[(Pm,j - Pro,j--i) + Urn,j--i�2 (Um+i/2,j--i/2 -- Um--i/2,j--i/2)

--Vm,j--1/2 (Vm+l/2,j--1/2 -- Vm--1/2,j--1/2 )],

where the quantities with fractional indices are obtained using either linear or bilinear interpolation:

Urn_l�2, j = (Urn, j q-Um_l,j)/2 ,

Um_l/2,j_ ½ = (Urn, j + Um--l,j +Urn,j--1 + Um--l,j--1)/4.

The fluxes F,_+l/2,j and Gin,j+1�2 are evaluated similarly.

We now describe the derivation of the discrete PPE at a boundary point (rn, 0) (see Fig.2.2), assuming

that no boundary condition on the pressure is prescribed there ahead of time. As in the continuous case,

the discrete boundary condition for the pressure will follow from the existing physical boundary conditions

and the discrete equations of the finite-difference scheme that we build.
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FIG. 2.2. Boundary control volume.

We rewrite equality (2.5) considering the control volume B,_,0 as the domain shown in Figure 2.2:

(gradp+(u.grad)u- divu)=0. (2.10)n d8U

OBm,O

Again, as in the case of an internal control volume, we break the integral (2.10) into four parts -- fluxes

through the four faces of the control volume Bin,o, and approximate each one of them using the numerical

quadrature

h

_ (Fro+i/2,0 -- Fro-i/2,0) -_-h(Gm,i/2 - Gin,o) = O. (2.11)

However, as the "south" face represents now a solid wall, we set the corresponding flux to zero:

a._,o = 0. (2.12)
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Thisimplies(seeequation(2.6))imposingtheappropriateNeumannboundaryconditiononthepressure

h Ohp
Onn - u._,o(V._+l/2,o - v._-1/2,o) + v._,o(U._+l/2,o - u._-1/2,o). (2.13)

Expression (2.13) can obviously be interpreted as a finite-difference approximation of the equation

Op Ov Ou

=0,

which is a specific version of equation (2.6) for the straight solid wall boundary y = 0.

The flux Gin,l�2 in (2.11) is defined in the same way as for the internal control volume case. For the

west flux we use the following formula

h
Fro-l/2,0 :_ (Pm,O --Pro-l,0) -- Um--1/2,0(Vm--1/2,1/2 -- Vm--1/2,0)

--_-Vm_l/2,0(Um_l/2,1/2 -- Urn_l/2,0) ,

and the east flux F_+l/2,0 is evaluated similarly to the above.

This discretization is extended to the body-fitted grids (generalized coordinates) in the same standard

way as any control-volume discretization. Therefore, we do not elaborate on this issue here.

2.2. Construction of the ABCs. As follows from the previous section, there are three flow quantities

to be determined throughout the computation -- pressure p and two velocity components u and v. External

boundary condition (i.e., closing mechanism for the discretized equations) will be needed for each of these

three quantities. As the exact solution for the problem under study (incompressible inviscid airfoil flow) is

known, we, for methodological purposes, will consider different computational strategies. First, we will be

solving for the pressure only while keeping the velocity field on the grid as prescribed by the exact solution.

Next, we will be solving for all three flow quantities. In both cases, we will compare the results obtained with

the global ABCs against those obtained with the exact boundary conditions of the Dirichlet type (Dirichlet

data at the external boundary taken from the exact solution) and on the other hand, against the results

obtained with the standard local ABCs. Accordingly, we construct the global ABCs separately for the

pressure and for the velocities. The boundary conditions are obtained using the separation of variables along

the boundary; this approach is well-known and can be regarded standard for deriving global ABCs, see [21].

2.2.1. Pressure ABCs. In the pressure-Poisson formulation that we are using, the elliptic factor in

the system is the Poisson equation for the pressure

Ap = f, (2.14)

which is to be solved on the infinite domain exterior to the airfoil subject to the condition of boundedness

of the solution at infinity and the Neumann boundary condition

Op rOn = ¢ (2.15)

on the airfoil surface ,. As mentioned in Section 2.1, boundary condition (2.15) is simply a reformulation

of the momentum equation in the direction normal to the solid wall, the function ¢ represents centripetal

acceleration (depends on the tangential velocity), the continuous explicit expression for ¢ is given in (2.8), and

11



the discretization is built as shown in (2.13). The only difference that to be emphasized between boundary

condition (2.15) and considerations of Section 2.1, see formula (2.8), is that formerly we have considered

the normal n always pointing to the center of curvature of ,, whereas n in equation (2.15) is the normal

to , with the fixed direction toward the interior of the airfoil (i.e., external normal for the flow domain).

Therefore, the sign of the centripetal acceleration in the function _ will depend on whether the curve , is

convex or concave at every particular location. Similarly to _, the right-hand side f of equation (2.14) also

depends on the velocities, the explicit expression for f is given in equation (2.2). Note, a more general and

more recent formulation of the scheme involves the equation for the velocity potential rather than pressure

as the elliptic factor. For incompressible flows, this equation is always homogeneous, which, in particular,

makes the construction of the ABCs conceptually more straightforward. In the current formulation, as

will be seen, taking care of the inhomogeneity f requires special attention. The corresponding experience,

however, is going to be useful for the future analysis of the compressible case in a similar framework.

Let us now denote by f_ the unbounded domain on which we are solving equation (2.14), then , = 0f_.

An obvious necessary condition for solvability of problem (2.14), (2.15) with p bounded at infinity is the

equality of the sum of all sources inside the domain f_ to the total flux through its boundary ,, i.e.,

/f = ] _ d, . (2.16)

f
df_

_f

F

As when constructing a standard analytic solution for the incompressible airfoil flow, for the purpose of

constructing the ABCs we use the conformal mapping between the domain f_ (exterior of the airfoil) of the

variable z = x + iy E C and the exterior of the unit disk {M > 1 [, ( = _ + i_/E C}. Here, however, we will

not need to know the explicit form of the conformal mapping, it will be sufficient to know that , is mapped

onto the unit circle M = 1 and z = oc corresponds to ( = oc. (For uniqueness, we also need a third real

parameter, which can, for example, be the value of arg (_ (oc), which corresponds to prescribing the angle

of rotation.) It is also important that the Laplace operator of (2.14) does not change with the conformal

mapping. As concerns the notations, we will for simplicity keep the same symbols p and f for the functions in

the new coordinates (_, _/), always assuming however that p = p(x(_, _/), y(_, _/)) and f = f(x(_, _/), y(_, _/)).

Note, the actual transform that we use is given by formula (3.1) in Section 3.1, this conformal mapping

maps the exterior of the airfoil onto the exterior of the disk of radius 1.1 centered at (-0.1, 0) (instead of the

exterior of the unit circle). This is only a technical difference that will not affect the forthcoming analysis

and conclusions.

On the complex plane of the variable ( = _ + i_/we introduce polar coordinates (p, 8) so that equation

(2.14) and boundary condition (2.15) transform into

and

1 0 [ _____]/ ,%)\ 1 02p_f(p, 8) (2.17)
pop \ op /P + p2 002

p=l ---- ¢(8), (2.18)

respectively. The external artificial boundary on the plane _ will be a circle of radius R centered at the

origin: p = R. As we will see in Section 3.1, the grid used for the numerical integration of the flow equations

is obtained by transforming a polar grid from the plane _ back to the plane z. This transform maps the

12



circle p = R onto the outer coordinate line of the curvilinear boundary-fitted conformal grid built around

the airfoil. On the circle p = R, we need to construct the ABCs that would guarantee that the solution

of equation (2.17) with boundary condition (2.18) found for 1 _< p _< R can be smoothly extended beyond

p = R to the entire infinite domain p _> 1 so that the extended solution satisfy the same differential equation

and wall boundary condition and also be bounded at infinity.

When constructing the ABCs, we will start with considering a particular case of f(p, O) - 0 for p _> R.

The motivation for that is twofold. First, it will always be the case for the new formulation of the scheme

for incompressible flows. Second, in many other situations, the right-hand side f, although not exactly

zero, decays sufficiently fast in the far field so that by neglecting it outside the computational domain (i.e.,

outside the artificial boundary) one does not introduce large errors. Experimentally, it is always possible to

see whether or not the assumption of homogeneity in the far field is acceptable [26, 27, 30, 31, 33].

Basically, the case when the governing equations are homogeneous in the far field is central for most

ABCs' methodologies, see [21]. For the particular formulation under study, having built the homogeneous

ABCs we will also show how one can explicitly take into account the inhomogeneity f, see (2.17).

The homogeneous boundary conditions are most easily obtained in the continuous formulation. We

Fourier transform equation (2.17) in 0 and as f(p, 0) = 0 for p _> R, arrive at the following family of ordinary

differential equations

1 d t/ d/Sk_ k2^
pdp _#dpp ]-p ffpk=0' p->R' k=0,+1,+2,... , (2.19)

parameterized by the wavenumber k. For k _ 0, the corresponding homogeneous equation from (2.19) has

two linearly independent solutions: /5_1) = plkl and/5_ 2) = p-lkl. Boundedness at infinity implies that all

modes/5_ 1) for all k = 4-1, 4-2,... should be excluded, which is equivalent to the following countable set of

conditions written in terms of the Wronskians:

det d/Sk d/5(£2) = 0, k = 4-1,+2,.... (2.20)

dp dp

Conditions (2.20) can, in fact, be imposed at any location p, at which equation (2.17) is homogeneous; setting

(2.20) at p = R immediately yields

d/Sk Ikl/Sk = 0, k = 4-1, +2,.... (2.21a)
dp p=R + R p=R

As concerns k = 0, the general solution of the corresponding homogeneous equation from (2.19) is C1+C2 in p.

Boundedness at infinity implies C2 = 0, which leads to the following boundary condition

d/50 = 0, (2.21b)
dp p=n

which can also be formally obtained from (2.21a) by letting k -- 0. The countable sequence of relations

(2.21b), (2.21a) for k = 0, 4-1, 4-2,... constitutes the full set of exact ABCs at the external artificial boundary

p = R. Boundary conditions (2.21) are applicable provided that f(p, 0) = 0 for p _> R. They guarantee that

the solution calculated for p _< R can be smoothly and uniquely complemented to the entire infinite domain

so that the complement solve equation (2.17) and be bounded at infinity.
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Note,afterFouriertransformingbackto thephysicalspace,theABCsobtainedby theseparationof
variablesalongtheboundarytypicallybecomenonlocal(e.g.,ABCs(2.21)).Mostoften,theseABCs(in the
physicalspace)arerepresentedbymeansofpseudodifferentialoperators,see[21].Fortheparticularcaseof
(2.21),however,a representationviasingularintegralsisalsoavailable;it wasobtainedbyLon_aridin [39]

andinvolvesthekernel in sin 0

Let us now consider the inhomogeneous case, when, generally speaking, f(p, O) _ 0 for p > R. After the

Fourier transform in 0 we obtain (cf. (2.19))

1 d [ d/5k'_ k2^
_p_p]--Tpk=?k(p), p>l, k=0,+l,+2,....

To discuss the solvability issues, we will also need to Fourier transform (2.18), which yields

(2.22)

d/sk p=l : @k, ]_ = 0, ±1, ±2,. (2.23)pp " . .

We start with the analysis of the case k = 0, which differs from the analysis for all other k's. In Fourier

space on the new plane (, the solvability condition (2.16) obviously transforms into

S d/5° p=lfo(p)pdp = V = _o .
1

We now integrate equation (2.22) for k = 0 from p = 1 to p = R and obtain:

(2.24)

R

i d [ d_o'_ d_o p=Rt PV ) ep=pV ---
1

Combining formulae (2.24) and (2.25) immediately yields

R

d_Odpp=l = S ]o(p)pdp.
1

(2.25)

R

@0
= / ]o(p)pdp - _o. (2.26)

P_--P p=R t/

1

Inhomogeneous relation (2.26) will replace homogeneous relation (2.21b) for k = 0 in the countable sequence

of boundary conditions in Fourier space. Note, if we assume for a moment, as before, that ]o(P) = 0 for

/1 /1p _> R, then obviously fo(p)pdp = fo(p)pdp, and because of (2.24) the right-hand side of (2.26)

vanishes and condition (2.26) transforms back into (2.21b).

Let us now emphasize a very important circumstance. Specifying Neumann boundary conditions for k =

0 on both edges of the interval (i.e., for p = 1 and p = R) may, generally speaking, be problematic from the

standpoint of solvability. Indeed, in the fully homogeneous case neither of these boundary conditions admits

the logarithmic mode and both admit the constant mode. Thus, 150 = const will solve the homogeneous

problem

1 d (____p0)pdp P =0,

d/5° p=l =0 d/5° =0 .dp ' dp p=R
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Consequently, the corresponding nonhomogeneous problem will not be solvable for any right-hand side, and

in case it is solvable, the solution will not be unique. The type of the boundary conditions (Neumann) for

k = 0 cannot be changed/relaxed because at both p = 1 and p = R these boundary conditions are obtained

from the physical considerations. Therefore, some additional solvability conditions are introduced that limit

the general admissible scope of the problem data.

As we have seen, for the original problem on the semi-infinite line p _> 1 the solvability condition is

required specifically because the boundary condition on the solid wall has Neumann's type. This solvability

condition is given by (2.24); relation (2.24) actually restricts the class of admissible right-hand sides 9/o

provided that _0 is given. The ABCs set at a finite location p = R are not independent from the interior

problem; it is rather the opposite -- the problem with these ABCs fully inherits the properties of solvabil-

ity/insolvability of the original problem. As has been shown for the problem with the ABCs, the solvability

condition (2.24) is rewritten in the form (2.26), which in the homogeneous case simplifies to (2.21b). A

convenient circumstance is that in the formulation that involves the ABCs the solvability condition (2.26)

(or (2.21b)) does not complement all other conditions of the problem, it is rather incorporated naturally (as

a particular relation in the Fourier space for k = 0) into the countable family of boundary conditions that

we build in Fourier space for k -- 0, 4-1 4- 2,....

Clearly, the homogeneous boundary condition (2.21b) can be interpreted as zero flux through the outer

boundary and thus it corroborates the natural physical meaning of the solvability condition. When a non-zero

right-hand f side extends beyond p = R, we replace (2.21b) with the nonhomogeneous boundary condition

(2.26) to ensure the solvability. The meaning of (2.26) is, of course, the same -- it is conservation, and the

difference compared to (2.21b) is that now because of a different right-hand side the flux through the outer

boundary should no longer be zero. The important thing is that the inhomogeneity on the right-hand side

of equality (2.26):

R

] ]0(p)p+- --"+/o'"]0(p)p+ (2.27)
_f

1

cannot be neglected even if ]0(P) is small for p > R, see (2.27). As has been mentioned, the latter is often

the case, but disregarding the aforementioned inhomogeneity will make this problem unsolvable rather than

simply introduce a small error into the boundary conditions and thus into the solution. In many other

situations (see, e.g., below) introducing such errors is not dangerous from the standpoint of solvability, and

the extent of the corresponding solution deterioration can always be assessed aposteriori (see [21]). In the

particular case under study, strict conservation of type (2.26) has to be enforced not only in the continuous

framework, but also on the grid; this issue will be discussed later.

For all other modes except k = 0, i.e., k = 4-1, 4-2,..., it is easy to see that the homogeneous problem

1 d // d/_k'_ k2^
p+ t - ypk= 0,

disk = 0 disk Ikl k = 0
dp p=l ' _-P p=R + R p=R

has only trivial solution (indeed, both/5_ 1) and/5_ 2) are eliminated by the boundary conditions) and therefore

the corresponding nonhomogeneous problem is solvable for any right-hand side (inhomogeneities, i.e., right-

hand sides can be introduced into the boundary conditions themselves as well). Therefore, the situation
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here is entirely different compared to the case k = 0. Namely, boundary conditions (2.21a) are exact when

the far field is homogeneous, f(p, 0) = 0 for p _ R. If a far-field inhomogeneity is introduced, its effect

can, in principle, be incorporated into these boundary conditions making them nonhomogeneous as well.

However, when the far-field inhomogeneity is small it can be neglected, which will not give rise to any

solvability concerns for k _ 0, and the corresponding error in the numerical solution will then be estimated

by aposteriori numerical checks, see, e.g., [26, 27, 30, 31, 33].

Note, the incorporation of inhomogeneity into the boundary conditions (2.21a), k _ 0, is not going

to be as easy as obtaining relation (2.26) instead of (2.21b). A general "conceptual" recipe for such an

incorporation can be found, e.g., in [23]; but it basically amounts to integrating (essentially, solving) the

nonhomogeneous differential equation on the infinite portion of the domain that is being truncated and

replaced by the ABCs. This is exactly what we are trying to avoid; besides, it is not feasible at any rate

unless we already know the solution or at least the closed form representation for f(p, 8) over the infinite

domain.

As for the methodology that we are currently describing, we neither want it to rely heavily on the

availability of the exact solution nor we pursue the goal of assessing the performance of the ABCs in the regime

when their exactness is "contaminated" by some small far-field inhomogeneities that are being neglected. As

has already been mentioned, we rather aim at demonstrating that the optimal convergence of the solver can be

recovered with the global ABCs in the simplest (i.e., ideal) regime. Therefore, in the numerical experiments

below we study the non-lifting flows so that the entire inhomogeneity of the problem is concentrated on the

zeroth Fourier mode k -- 0 only. Even for a simple lifting airfoil flow, we would have already had to either

neglect the far-field inhomogeneities for k -- ±I and thus study the overall performance of the algorithm

affected by this approximation as well, or alternatively, use the explicit form of the exact solution, substitute

it into the left-hand side of (2.21a) for k -- ±I and this way create the correct inhomogeneity for the boundary

conditions. In this paper, we are doing neither of the above. As concerns studying the effects of dropping

the far-field inhomogeneities, an investigation of this type for the more general compressible formulation of

the scheme is likely to become a subject of our future work.

To derive the ABCs for the finite-difference scheme we follow a procedure similar to the one we used

for obtaining the continuous boundary conditions. The grid on the plane _ is a polar grid uniform in 8 and

stretched in p; when mapped back onto the plane z it yields a curvilinear O-type grid fitted to the airfoil

surface. The grid has J cells in the radial direction with the nodes pj, j -- 0,... , J, so that P0 -- 1 and

pj -- R, and M cells in the circumferential direction with the constant grid size A8 ---- 27_/M and nodes

8m -- mAS, m ----0,... , M; due to periodicity the angular directions 80 -- 0 and 8M ---- 27_ coincide.

A second order accurate discretization of the flow equations that we use is outlined in Section 2.1. It

is a finite-volume discretization performed directly on the curvilinear body-fitted grid in the physical plane

z. It is easy to check however, that if the exact same finite-volume approach was applied to the polar grid

on the model plane _, then for the pressure Poisson equation (2.17) it would result in the following natural

central-difference discretization:

1 1 I/ P._ j+l -- P._ j Pm,j - Pro,j-1 "_
_Pj+I/2 k__?___ ' __ Pj--1/2

pj Apj \ /..hpj__i/2 Zp-j__/2 ;

1 Pm+l,j - 2pm,j + Pm-l,j : flm,j
2 A82 ,

Py

+

(2.2s)

where Pj_-I/2 = (Pj_-I + pj)/2, Pj--1/2 = (Pj + Pj-1)/2, Apj_-I/2 = Pj_-I -- Pj, APj--1/2 = Pj -- Pj--1, and
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Apj = (Apj-1/2 + Apj+I/2)/2. Finite-difference equation (2.28) will be used for deriving the discrete

counterpart to the nonhomogeneous boundary condition (2.26).

Along with the fully discrete equation (2.28) we will also consider a semi-discrete form of the homogeneous

equation in the far field:

l d ( _p ) 1p,_+1- 2p,_ + p,__1= O' m--0, M-1. (2.29)p dp P + p2 A02 ""'

Introducing the direct discrete Fourier transform

M--1

1 M M (2.30a]
Pk = _ _ P,_e -ik'_e, k- 2 +1'''' ' _-' \7

m=O

and inverse discrete Fourier transform

M/2

p,_ = _ Pke ik'_e, rn = 0,... , M - 1, (2.30b)

k=--M/2+l

on the grid, we reduce (2.29) to

l d I" d_k'_ 2 M MO_k^

pdp _Pdpp]-7 pk:0' k- 2 +1''''' 2'
(2.31)

4 kAO
(_ = _- sin 2 _-

For any particular k, equation (2.31) looks very much like (2.19) except that k 2 is replaced by a_. To

obtain the boundary conditions, we introduce a row of ghost nodes with j = J + 1, PJ+I : PJ + Apj+I/2 :

R+ Apj+I/2, and first write down the system of equalities similar to (2.21a) but at the location p = PJ+I/2 :

R + Apj+l/2/2 rather than p = R (k # 0):

dpk P=PJ+,/2 @ [ak[ Pk = O, k - M M (2.32)
dp PJ+l/2 p=pJ+l/2 2 + 1,... ,--1, 1,... ,_-.

Then we discretize (2.32) consistently with the central-difference discretization (2.28), which yields

or

Pk,J+l --Pk,J + JOzkJ Pk,J+l -_-Pk,J _ 0, k -- M M (2.33)
APJ+I/2 PJ+I/2 2 2 + 1,... ,--1, 1,... , _-,

(J__ PJ+I/2 _ = (JOzkJ PJ+I/2 )
Pk,J+l + _2 ] --Pk,J 2 Apj+l/2 '

(2.34a)
M M

k- 2 +1,...,-1,1,...,_-.

The remaining mode k = 0 is treated separately as before; in the homogeneous case instead of (2.21b) we

have:

PO,J+I -- PO,J
--0,

Apj+I/2
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or

/50,g+l =/50,g. (2.34b)

Note, as in the case of the continuous boundary conditions (2.21b) and (2.21a), relation (2.34b) can also

be formally obtained from (2.34a) by substituting ak = 0 for k = 0. In the physical discrete space we can

rewrite the system of equalities (2.34a), (2.34b) as one matrix relation

PJ+I = F-ldiag {ilk} F pj :_ T pj, (2.35)

flo = 1,

(2.36)

pj and PJ+I are the M-component vectors that contain the grid values of p for the last row of nodes j = J

and the row of ghost nodes j = J + 1, respectively, and F -1 and F are M x M matrices that denote the

inverse (2.30b) and direct (2.30a) discrete Fourier transforms, respectively.

Note, unlike in many cases from our previous work (see, e.g., [25-27, 30, 31, 33, 40]), boundary condition

(2.35) is not built so that to guarantee extension of the interior solution beyond the artificial boundary as

an exact solution of the homogeneous finite-difference equation (equation (2.28) with f,_,j = 0). This would

require obtaining the exact discrete counterparts to the two modes/5_ 1) and/5_ 2) in polar coordinates on

the stretched radial grid, which is not an obvious task. Thus, by considering the semi-discrete equation

(2.29), deriving the corresponding continuous boundary conditions (2.32), and then approximating them

with finite differences (2.33) consistently with (2.28), we come here as close as we can to building the true

exact finite-difference ABCs. However, as we always maintain the second order of accuracy for our discrete

approximations, both for the differential equation itself and for the boundary conditions, we do not expect

that this approach may be problematic form the standpoint of final accuracy. Our numerical experiments

corroborate that the ABCs that we construct this way are capable of producing very high accuracy, quite

comparable with the one obtained when the ABCs were built based on the exact solution, see Section 3.

Moreover, it is obvious that for small A0 and small k (long waves) we have a_ _ k 2, see formula

(2.31). Therefore, the difference between the truly continuous boundary conditions (2.21a) and semi-discrete

boundary conditions (2.34a) is not going to be large unless all modes including high frequencies on the grid

(i.e., large k's) are well represented in the solution. Experimentally we have observed that replacing lakl

by simply Ikl in relations (2.34a) indeed does not cause any noticeable changes in the numerical solution

when calculating the non-lifting airfoil flows. (The exact solution for such flows does not contain any angular

modes beyond Ikl = 2.)

Let us point out some easy-to-see properties of the matrix T of (2.35). First, this matrix is circulant:

T z

to tM-1 tM--2 ... tl

tl to tM--1 ... t2

t2 tl to • • • t3

: : : ".. :

tM--1 tM--2 tM--3 • • • to

(2.37)
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This follows immediately from the periodicity in circumferential direction. Moreover, the matrix T is

symmetric because tj = tM-j for j --- 1,... , M - 1; these equalities simply reflect the fact that the response

to a point source on the circular boundary will be the same in both clockwise and counterclockwise directions.

Finally, all eigenvalues /_k of the matrix T, see (2.36), are non-negative and moreover, 0 _< /_k _< 1 for

k = -M/2 + 1,... ,M/2. Indeed, as mentioned in Section 3.1 below, the grids that we actually use for

our computations are stretched in the radial direction so that to maintain the cell aspect ratio equal to

one throughout the entire domain. This, in fact, means that pj+l/2/Apj+l/2 = l/A0, and recalling the

definition of ak, see (2.31), we conclude that the first expression in brackets in the definition of/_k, see (2.36),

is always non-positive. Thus, /_k _> 0. The second inequality for the magnitude of/_k follows directly from

formula (2.36).

The aforementioned properties may be beneficial from the standpoint of multigrid analysis, as well as a

certain type of implementation, see Section 2.3. However, it yet remains to be seen whether similar properties

can be established for more general cases.

When a far-filed inhomogeneity is present, we need, as has been shown, special treatment for the zeroth

Fourier mode k = 0. First, we write down the one-dimensional finite-difference equation

1 1 f /5oj+l -/5o j /50,j -/50,j-1 xI
(Pj-}-I/2 _----' Pj--1/2 ; = f0,j, (2.38)

pj Apj \ /---_Pj+I/2 _

which one can obtain directly from (2.28), and notice that/50,j -- const is a solution to the homogeneous

counterpart of (2.38). This is the only case an exact solution to the discrete homogeneous equation is easy to

find. The second linearly independent solution to (2.38) has to grow for large j's as on any finite domain it

should approximate in p; this second mode is prohibited by boundary condition (2.34b) for the homogeneous

case when ]o,j --- 0 for j _> J. Let us now perform summation by j from j -- 1 to j -- J on both sides of

(2.38), this discrete operation is an analogue of the integration (2.25):

J f /50 j+l --/50 j /50,j --/50,j--1 "_

E (Pj+I/2 _----' Pj--1/2 ;
j=l \ /"_Pj+I/2 Apj-1/2

(2.30)
J

PJ+I/2/50,J-{-1 --/50,J Pl/2/50,1 --/50,0 __ E PJ Apj fo,j.

Apj+I/2 Apl/2 j=l

From (2.39) we conclude that we need to replace (2.34b) by the following nonhomogeneous boundary condi-

tion:

J

pjW1/2/50,J+l --/50,J __ E PJ/kPJfO'J + Pl/2/50'1 --/50,0 (2.40)

Apj+I/2 j=l Apl/2 '

which is a discrete counterpart to (2.26).

Let us now note that f_,j has a rather special structure -- it can be represented using the divergence

theorem as fluxes through the boundary of a control volume Am,j shown on Figure 2.1, see the discussion

in Section 2.1. On the polar grid, the area of this control volume is

2 2

-- Pj-1/2) 27_pj/kpj7_(Pj+1/2

M M

Now, applying the divergence theorem, we obtain

( 27rpj+l/2Gf 27r_1/2 Gf j 1/2)27rpjApj fm,j = Apj(Ffm+i/2, j -- Ff m 1/2 j) -Jr- M m,j+i/2 (2.41)
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Notice, unlike in Section 2.1, the fluxes Ffm±l/2,j and Gfm,j±l/2 in equation (2.41) have the superscript f;

this emphasizes that they take into account only the contribution of the actual right-hand side f of equation

(2.2). This means that instead of evaluating integral (2.9) using the control volume approach, we evaluate

a similar integral with gradp taken out and thus only the velocity's contribution left.

Calculating now the zeroth Fourier component of f_,j, see equation (2.30a), and using equation (2.41)

we obtain

M--1 ( M--1 M--1 )

1 1

fo,j : _ E frn,j- Pj+I/2 E afm,j+l/2 --Pj-1/2 E afro,J-l� 2 "
m=0 MpjApj \ m=0 m=0

Substituting the previous expression into (2.40) yields

M--1 M--1

pj+l/2Po,J+l -- PO,J _ PJ+I/2 Pl/2 , P0,1 -- P0,0
Apj+i/2 M E afm,J+i/2---M E afro,i�2 -'_ P1/2 Xp_2/2 . (2.42)

?'n=O ?'n=O

Clearly, the discussion in Section 2.1 and more precisely, the requirement (2.12) of zero flux through the

boundary that leads to the boundary condition (2.13) on the solid wall, implies that

M--1

Pl/2

M E afro,l/2 : Pl/2_0'1 -- PO,O

m=0 A Pl /2

Therefore, we obtain

M--1

P0,J+I -- P0,J 1

Apj+i/2 -- M E Gfm,J+i/2" (2.43)
m=0

Relation (2.40) and its particular form (2.43) represent the exact conservation on the grid that is required

for the solvability of the discrete problem. The inhomogeneity on the zeroth Fourier mode, see (2.43), can

also be included into the boundary condition in the matrix form, which will then read

PJ+I : Tpj + APJ+I/2 _,j, (2.44)
27_pj+1/2

where _,j is the total flux due to the forcing term through the outer faces of the control volumes centered

at the J-th gridline.

From the standpoint of implementation, boundary conditions (2.35) or (2.44) are matrix-vector relations

that connect the values of the solution p on the last row of grid nodes j = J and the row of ghost nodes

j -- J+ 1. These boundary conditions are equivalent to the possibility of smoothly and uniquely complement

the solution from inside the computational domain to its infinite exterior so that the extension solve the entire

original problem. The unique choice of such boundary conditions (within the accuracy of finite-difference

approximation) along with the existence of the conformal mapping between the planes z and ¢ imply that the

discrete ABCs (2.35) or (2.44) obtained originally for the plane ¢ can be used on the plane z with no changes,

simply as the equalities connecting the values of the solution on two rows of the grid through matrix-vector

multiplication. This property is fully corroborated experimentally, see Section 3, even so the finite-difference

equation for the pressure on the actual body-fitted grid may differ from equation (2.28) in the sense that

the stencil may contain more than five nodes for those cells that noticeably differ in shape from rectangles.

(In contrast to (2.28), for strongly skewed cells diagonal nodes may be present with small coefficients.)

We also note that even provided that the problem is solvable, ensuring the uniqueness of the discrete

solution requires special attention. Indeed, as we have seen an arbitrary constant can be added to the

solution on the zeroth Fourier mode. The issue of guaranteeing the uniqueness throughout the computation

is touched upon in the implementation Section 2.3.
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2.2.2. ABCs for velocities. It is known that for the particular case under study the quantities u and

-v satisfy the Cauchy-Riemann equations:

0u 0v

Ox Oy '
Ou Ov

Oy Ox "

(2.45a)

Let us first note that equations (2.45a) imply that both u and v separately satisfy the Laplace equation.

Thus, we essentially could have applied the same homogeneous boundary condition that we have constructed

for p, see (2.35), to velocities as well. However, we will rather construct the ABCs for velocities directly on

the basis of the Cauchy-Riemann system. This will simplify the analysis for the zeroth Fourier mode, which

was "problematic" in Section 2.2.1.

As before, we will construct the ABCs as vector relations on the model plane _ and then use them

with no changes on the physical plane z. Also as before, we will retain the same notations u and v for the

functions in the new coordinates (_,7), always keeping in mind, however, that u -- u(x(_,7),y(_,7)) and

v = v(x(GT),y(_,7)). On the model plane _ = _ + i7 the quantities u and -v also satisfy the Cauchy-

Riemann equations:

0u 0v

0_ 07 '

Ou Ov

o7 o_

(2.45b)

The boundary conditions for velocities will actually be constructed on the basis of equations (2.45b).

Let us introduce polar components of the velocity vector u

up = u cos 0 + v sin 0,

uo = -u sin O + v cos O ,

and rewrite the Cauchy-Riemann equations (2.45b) in polar coordinates

O(pup) Ouo
Op 00 '

O(puo) OUp
Op 00

Denote q = [up, uo] t and represent (2.47) as a matrix equation

where

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

AE°I1]0
For the Fourier coefficients qk = _lk(P) we obtain from (2.48):

d(p(lk) _ ikA(lk , k = 0,±1,±2,....
dp

21



WenowdiagonalizethematrixA of (2.49) and obtain:

AK = KA,

where

Ai, 0]0 -i ' -i

Introducing Sk = K-lqk _ Ok = Khk, we get instead of (2.50):

d(p_k)

dp

Equation (2.53) immediately yields

1]i

(2.51)

(2.52)

- ikA_k, k = 0,±1,±2,.... (2.53)

[ C_k)p-k-1 ]8k = C_k) pk_l ,

where C_ k) and C_ k)

old variable Ok, we have (the matrix K is given by (2.52)):

[ c_k) p-k-l + c_k) pk-1 ]Ok = KSk = _ic_k) p_k_l + ic_k) pk_l

Finally, introducing the inverse to the transformation (2.46)

u = up cos 0 - uo sin 0,

v = up sin 0 + uo cos 0,

and substituting the expressions

(2.54)

are constants (different for different k's). Going back from representation (2.54) to the

into (2.56) we obtain

[A]Upk

UOk

which implies

U z E _tk¢ikO _ ^ _ikOV _ 2._ Vke

k k

E^ " _ ^ _ikOup = upk e_kO , uO = _ uOk e ,
k k

E ^ _ikO 1E_tpk (¢i(k+l)O___ei(k--1)O) _ 1 (¢i(k+l)O ¢i(k--1)O)uk_ = _ _ Z _o_ - ,
k k k

E^_ikO 1 ^ (ei(k+l) o ei(k_l)O) 1 (ei(k+l) o ei(k_l)O)v_ =_Zu_ - +_Z_o_ + ,
k k k

1 i^ 1 i^
_k = __p__, + _uo__, + _p_+, -

-i^ 1 i^ 1
_k= _-up__, + z_o__, + _up_+, + _o_+, •g

The last step is to substitute (2.55) into (2.57):

_t k = c_k-1) p -k + c_k_-l) p k ,

Vk z --ic_k-1) p -k "F ic_k+l) pk •

(2.55)

(2.56)

(2.57)

(2.5s)
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Representation (2.58) is valid for all k's including k = 0. Contrary to the general solution of the Laplace

equation for k = 0:C1 + C2 lnp, see Section 2.2.1, we do not have a growing logarithmic mode in represen-

tation (2.58) for k = 0. This constitutes a principal difference compared to the previously analyzed case and

also gives the primary reason why we construct the ABCs for velocities directly from the Cauchy-Riemann

system (2.45b) rather than first reduce it to two separate Laplace's equations for u and v.

The physical boundary conditions for velocities at infinity are obvious: the vector field u has to approach

its free-stream value Uo as Izl ---+ cx_. As _(cx_) = cx_, the value of u at infinity on the model plane _ is also

Uo and thus the boundary condition at infinity on the plane _ is the same as on the plane z: u --+ Uo as

M --+ cx_. This, in particular, implies boundedness of the vector field u at infinity. Then, from formula
y-_(k+l)(2.58) we conclude that we need to require that -2 = 0 for k > 0 and C_ k-l) = 0 for k < 0; for k = 0

both C_ -1) and C_ 1) are allowed. Therefore, for k _ 0 in the continuous framework we obtain analogously

to (2.21a):

ditk p=R Ikl itkdp + = 0,
/_ p=R

d_k p=R Ikl_k = 0,dp + R p=R

and in the discrete framework, analogously to (2.34a):

k = ±1,±2,... ,

k = ±1, ±2,... ,

(2.59)

(_ PJ+I/2 _ = ([_[ PJ+I/2 _ M M
_tk'J+l + Ap_/+I/2/ --_tk,j Ap_+I/2/ ' k - 2 + 1,... ,-1, 1,... , _-,

(2.60)

?)k,J+l (_-'_- PJ+I/2 )=__)k,j(l_l PJ+I/2 _ M MApj+I/2 _P_-+l/2,/ ' k- 2 + 1,...,-1, 1,..., _-.

The only difference between (2.60) and (2.34a) is that in (2.60) we have Ikl instead of lakl. As has been

shown, ak in (2.34a) comes from the central-difference second-order discretization of the Laplacian (2.28)

that we do not use for velocities. It has also been mentioned that for small k's (long waves) the difference

between using [k[ and [ak[ even in (2.34a) is not noticeable.

For k = 0, the difference between the boundary conditions for velocities and the corresponding boundary

conditions for the pressure is significant. As we do not have to worry about cancelling the growing logarithmic

modes for velocities, and as we know the free-stream value of the velocity vector Uo = [U, V] t, we simply

have

?_O,J+l : U ,

(2.61)
?_0,J+l = V .

The meaning of boundary conditions (2.61) is transparent -- the correct value of the solution at infinity,

i.e., the correct constant, is picked up on the zeroth Fourier mode, all other Fourier modes in the solution

vanish at infinity.

Formulae (2.60) and (2.61) constitute the global ABCs for velocities. It is interesting to note that as the

momentum equations are actually integrated by means of downstream marching, the information provided

by boundary conditions (2.60), (2.61) is used only on the inflow portion of the artificial boundary. As,

however, the computations show, the values of u on the outflow portion of the boundary obtained with the

global boundary conditions very well agree with the actual values obtained by the downstream integration

through the domain, see Section 3.4.
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2.3. Combined formulation and implementation. The values of the solution at the ghost points,

i.e., on the (J + 1)-th gridline, are obtained by applying the ABCs of Sections 2.2.1 and 2.2.2 to the current

approximation on the outer boundary, i.e., on the J-th gridline. This is followed by a relaxation sweep. The

aforementioned two steps form the combined relaxation sweep.

We apply a standard multigrid algorithm known as the Full Approximation Scheme (FAS). The only

"non-standard" aspect that requires special attention is the application of the ABCs for the pressure on the

coarser grids, because these ABCs involve the conservation issue outlined in Section 2.2.1.

The pressure equation on the finest grid can be written as follows

Lhph = fh,

where L h is the discrete Laplacian and fh is the forcing term as defined earlier. The fine grid equation

residual is given by

Then, the FAS coarse grid equation is

where

r h = fh _ Lhph.

LHpH : fH,

fH = LH i_ph + _r h,

and I H and _H are the restriction operators. The operator I H is a standard injection operator, and the

operator _H is also a standard Full-Weighting operator.

Let us note that since _H is a "conservative" operator, the coarse-grid right-hand side fH possesses

the same telescopic property as the fine-grid right-hand side fh has. This means that it is composed of

flux contributions through the control volume boundary, and for a pair of neighboring control volumes the

contributions from fluxes through the common interface cancel one another. Therefore, by summing up the

source terms fH on the coarse grid we again arrive at the total flux through the outer faces of the control

volumes centered at the nodes of the J-th gridline, i.e., the quantity z__,_=0 ,_,J+l/2, see formula (2.43),

(the index J refers here to the coarse grid) in the same way as we have done that on the fine grid.

As the pressure in an incompressible flow problem is defined only up to an additive constant, the

uniqueness of the solution is achieved by keeping its value fixed and equal to an initially prescribed quantity

at one of the nodes on the coarsest grid throughout the entire computation.

We should also mention that another way of implementing the non-local ABCs, which has not been

actually tried yet, consists of using relation (2.44) to actually eliminate the ghost cells and thus solve

iteratively only for the variables on the original grid. The properties of the ABCs' matrix T obtained

in Section 2.2.1, see the discussion right after formula (2.37), may then help to establish and analyze the

properties of the overall system matrix from the standpoint of convergence and convergence rate of the

(multigrid) iterations.

3. Numerical experiments.

3.1. Test problems. One test problem considered here is the incompressible, irrotational flow around

a symmetric airfoil. A circular cylinder is transformed into an airfoil by the K£rm£n-Trefftz transformation,

z÷2 (_ + 1"_ 2-_/"
z--2- \_L_] (3.1)
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where _ is the complex coordinate in the circle plane, z is the complex coordinate in the physical plane,

and c is the trailing-edge angle. The cylinder in the _-plane is centered at _ = (-0.1, 0) with a radius of 1.1.

The trailing edge angle c is 10 °. This generates an airfoil with a thickness ratio of approximately 15_ in

the z-plane.

The grids are generated by using a uniform azimuthal spacing around the cylinder in the _-plane. The

spacing in the radial direction is stretched such that the cell aspect ratio is equal to one everywhere. The

dimensions of the grids that we have used are given in the next section, see Table 3.1.

Besides the airfoil flow, and primarily for the reasons of comparing the numerical performance for

different geometries, we have also calculated an irrotational flow around a circular cylinder. This is the same

cylinder as the one we substituted into the transformation (3.1) to obtain the K_rm_n-Trefftz airfoil. Thus,

for the cylinder case the planes z and _ coincide and the flow around the cylinder is calculated on the actual

polar grid.

Only non-lifting solutions are considered hereafter for both the airfoil and cylinder, so the freestream

flow is aligned with the x-direction.

3.2. Computational setting. The actual dimensions and approximate geometric sizes of the grids

that we have used for our calculations are presented in Table 3.1.

TABLE 3.1

Grid dimensions and sizes

Grid dimension: angular x radial 129 x 129 129 x 65 129 x 33 129 x 17 129 x 9

Approximate location of the

outer boundary for the cylinder 272.5 11.5 2.5 1.1 0.75

case measured in diameters

Approximate location of the

outer boundary for the airfoil 135 6 1.25 0.55 0.37

case measured in chords

Approximate locations of the boundary in Table 3.1 are given with respect to the center of the cylinder (i.e.,

circle) or airfoil; in the latter case the location closest to the airfoil surface is presented.

On each grid shown in Table 3.1 we have calculated a non-lifting incompressible inviscid flow with a given

free-stream speed. The discrete flow solution is calculated by applying multigrid iterations to the elliptic

part of the factorized system (pressure) and using a downstream marching algorithm for the advection part

(velocities), see Section 2.3. We employ a full approximation scheme (FAS) multigrid W(2,1) cycle, with

full weighting restriction and full coarsening [10]. The number of nested grids for each computation is

determined by the dimension of the finest grid (see Table 3.1), i.e., the number of possible subdivisions by

two. On the coarsest grid we find the "exact" solution by performing sufficiently many relaxation sweeps.

For a pure Laplace or Poisson equation on the grids of the kind presented in Table 3.1, the smoothing rate

for a lexicographic Gauss-Seidel relaxation is 0.5 per one sweep [10]. Therefore, for a W(2,1) cycle the

"predicted" or ideal convergence rate is 0.5 (2+1) = 0.125 per cycle, i.e., the residual should drop by a factor

of 1/8 in a single multigrid cycle.

Actually, we have calculated two types of flow solutions. First, we were solving for the pressure only

while keeping the velocity field frozen on the grid with the values taken from the exact solution. Next, we

solved the full Euler system as well. The ideal convergence rate of about 0.125 per cycle was indeed observed
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in our computations when we were solving for the pressure only, see Section 3.3. As concerns the true Euler

solution, if we were to fully separate the elliptic and hyperbolic factors in the Euler equations, we should have

seen the exact same convergence rate. In fact, we observed a somewhat slower convergence when solving the

full Euler equations, see Section 3.4. The reason for the discrepancy is not related to the treatment of the

external artificial boundary as the slowdown takes place for all three types of the ABCs that we employ, see

below. Convergence deterioration that we observe is rather caused by the following. It has been mentioned in

Section 2.1 that the subprincipal terms in this equation can be disregarded when constructing the relaxation

scheme. However, near the stagnation point this may be not legitimate. A possible implication of this, i.e.,

loss of efficiency, is discussed in the recent paper [16].

For each variant of the computation (determined by the geometry and the grid, see Table 3.1), we have

used three types of external ABCs. The first boundary conditions are of the Dirichlet type for all three

flow quantities, the actual data to specify at the outer boundary are taken from the available exact solution.

This is apparently the best possible treatment for the artificial boundary and henceforth these ABCs will

be referred to as exact. The second boundary conditions are global ABCs described in Section 2.2, hereafter

they will be referred to as global. Finally, the third boundary conditions are local; they are set as follows.

In the course of the relaxation procedure, the residuals of the pressure equation are evaluated near the

_P outerouter boundary on "halves-cells" using the condition _nn = 0, where n is the normal direction to the

boundary. Besides, at each point on the outer boundary we specify the flow angle, which is approximately

taken to be equal to that at infinity (i.e., to the angle of attack). Finally, to calculate the magnitude of

the velocity, we use the conservation of the total pressure and the corresponding value of the static pressure

that has just been updated. The local approach is obviously the simplest of the three in the sense that local

ABCs are easier to construct and implement than the global ones and at the same time they can be used

when the exact solution is not available.

The purpose of conducting the foregoing series of computations on different grids (see Table 3.1) with

different ABCs' is to compare the multigrid convergence rates as they depend on the type of ABCs and

domain size. We will also be comparing the accuracy of the numerical solutions as it depends on the domain

size and the type of the ABCs. These two characteristics -- convergence rate (i.e., numerical eificacy) and

accuracy -- are obviously of the foremost importance when designing any numerical algorithm.

Since the solutions that we have calculated develop neither lift nor drag, the accuracy is assessed not

by examining integral characteristics of the flow, like lift and drag coefficients (as typical for many CFD

studies), but rather by comparing the actual error profiles for different flow quantities.

3.3. Solving for the pressure only. In this section we describe and analyze the numerical results

for two cases -- non-lifting flow past a circular cylinder and non-lifting flow past an airfoil. As has been

mentioned, the velocity field on the grid for this series of computations is considered known, we actually

take it from the exact solution obtained using classical complex variable technique.

3.3.1. Circular cylinder. In Figure 3.1 we present the results obtained with the exact far-field ABCs,

both convergence history and surface pressure error, for the flow past a circular cylinder. In Figures 3.2 and

3.3 we present similar results obtained with the global and local far-field ABCs, respectively.

From Figures 3.1(a) and 3.2(a) one can easily conclude that for the exact and global ABCs we have been

able to obtain the multigrid convergence rate according to the theoretical prediction -- roughly one order of

magnitude reduction of the pressure residual per one W(2,1) multigrid cycle. As concerns local ABCs, from

Figure 3.3(a) we see that the same is true only for the sufficiently large grids, 129 x 129 and 129 x 65, and
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consequently, large domains, see Table 3.1, whereas for smaller domains the convergence slows down.
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FIG. 3.1. Computation of the flow past a circular cylinder using exact ABCs.
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FIG. 3.2. Computation of the flow past a circular cylinder using global ABCs.

To assess the accuracy we compare the profiles of the relative error in pressure (we can calculate it

explicitly as the exact solution is known) on the surface of the cylinder. Figures 3.1(b) and 3.2(b) show

that for the exact and global ABCs this relative error is always below the 10 -2 level, i.e., 1%, for all grids.

For the local ABCs the accuracy level better than 1% can be obtained again only for the two largest grid

dimensions, 129 × 129 and 129 × 65. With the reduction of the grid dimension and, accordingly, domain size

(see Table 3.1), the accuracy deteriorates and eventually reaches the value O(1) for the smallest grid 129 × 9,

see Figure 3.3(b). Besides, Figure 3.3(b) shows that for the smaller domains (129 × 17 and 129 × 9) the flow

develops some spurious non-physical asymmetries. Indeed, the two close lines of the same dash pattern on
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Figure3.3(b)correspondto theerrorprofilesontheupperandlowersurfacesofthecylinderforaparticular
grid.Theoretically,thesetwolinesshouldbeindistinguishable,whichisthecaseforthelargerdomains;the
actualdiscrepancythat weobserveforthesmallerdomainsindicatesthepresenceof asymmetry.
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FIG. 3.3. Computation of the flow past a circular cylinder using local ABCs.

Summarizing for this case, we see that the exact and global ABCs perform equally well for domains of

all sizes, whereas the performance of the local ABCs noticeably degrade with the shrinkage of the domain.

3.3.2. K_rm_n-Trefftz airfoil. In Figure 3.4 we present computational results obtained with the

exact far-field ABCs, both convergence history and surface pressure error, for the non-liRing flow past a

K£rm£n-Trefftz airfoil with the 10° trailing edge angle. In Figures 3.5 and 3.6 we present similar results

obtained with the global and local far-field ABCs, respectively.
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FIG. 3.4. Computation of the flow past an airfoil using exact ABCs.
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FIe. 3.6. Computation of the flow past an airfoil using local ABCs.

As concerns multigrid convergence rate in this case, from Figures 3.4(a) and 3.6(a) we see that for the

exact and local ABCs, respectively, we have been able to recover it according to the theoretical prediction

(Section 3.2). The multigrid convergence rate for global ABCs, see Figure 3.5(a), is also obtained according

to the theoretical prediction -- about one order of magnitude reduction of the residual level per one W(2,1)

multigrid cycle, but for smaller grids the residual never reaches the machine zero. Instead, starting from some

level specific for each grid, the convergence curve "flattens" and the residual does not drop any further, see

Figure 3.5(a). We postpone the discussion of why, in our opinion, this phenomenon occurs till Section 3.3.3.

Now we only emphasize that the level at which the residual flattens, see Figure 3.5(a), is well below (several

orders of magnitude) the truncation error level for all the cases that we have studied. Therefore, we do not

expect that this phenomenon will affect the final accuracy of the solution in any respect.
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Indeed, for the exact boundary conditions the accuracy for all grids is about _ 10 -4, see Figure 3.4(b),

except in the small areas near the leading and trailing edges. In these areas we are, in fact, encountering the

well recognized problems with the approximation. Indeed, at the trailing edge, the conformal mapping that

we use for generating the grid has a singularity, therefore the surface normal is not well defined there. Instead

of accounting for this singularity analytically when developing the discretization we effectively "ignore" it

and apply the nontranspiration boundary condition by evaluating the surface normal at the trailing edge

in the same way as we do over the rest of the of the airfoil surface, by finite differences of the surface

coordinates. At the leading edge, the numerical viscosity apparently dominates the behavior locally, so there

is an artificial dissipative error that corrupts the total pressure. However, the latter problems have no direct

relation to the treatment of the outer boundary, which is the subject of the current study.

Comparing the accuracy provided by the exact ABCs to the one that we obtain with the global ABCs,

i.e., comparing Figures 3.4(b) and 3.5(b), we see that for the first three grids, 129 × 129, 129 × 65, and

129 × 33, global ABCs provide for the same accuracy as the exact ones do, i.e., about 10 -4. For the next

smaller grid, 129 × 17, the accuracy with the global ABCs is _ 10 -3, and for the smallest grid 129 × 9 this

accuracy is _ 10 -2. Thus, it turns out that in terms of accuracy global ABCs perform somewhat worse than

the exact ones on small computational domains (see Table 3.1) for this airfoil case. It is clear, however, that

the accuracy that we do recover with the global ABCs, see Figure 3.5(b), is still acceptable for all purposes.

We also note that the exact ABCs are obviously not available in realistic situations, while global ABCs can

be constructed, e.g., on the basis of the difference potentials method, see [21].

One might think that the slowdown of convergence that we observe for global ABCs on the smaller grids,

see Figure 3.5(a), and the slight deterioration of accuracy that we also observe for these boundary conditions

on the smaller grids, see Figure 3.5(b), could be related to one another. We claim that this is, in fact, not

so, because for the local ABCs that do provide in this case for the optimal convergence till the machine zero

on all grids, see Figure 3.6(a), the accuracy rapidly deteriorates as the domain shrinks, see Figure 3.6(b),

and reaches the level _ 10 -1, i.e., 10_, for the smallest grid 129 × 9.

Summarizing for the airfoil case, we see that the global ABCs actually perform only slightly worse than

the exact ones and their accuracy is certainly within the practically acceptable limits on all grids, whereas

the solutions obtained with the local ABCs rapidly lose accuracy as the domain size reduces.

3.3.3. Comparison of the cylinder and airfoil computations. The first easy observation that one

can make is that on the average the relative accuracy for the K_rm_n-Trefftz airfoil is better than that for

the circular cylinder for all the computations that we have conducted, see Figures 3.1(b) -- 3.6(b). With no

rigorous explanation we can attribute this to the mere fact that in some sense a "thick" cylinder introduces

more of a perturbation into the flow that a "thin" airfoil does (the thickness ratio of the airfoil is 15%,

see Section 3.1). The same fact apparently accounts for the slowdown of multigrid convergence on smaller

domains when computing the flow past a cylinder with local ABCs, see Figure 3.3(a), whereas the same

local ABCs for the airfoil still provide for the optimal multigrid convergence rate, see Figure 3.6(a). We

emphasize here that the convergence slowdown on Figure 3.3(a) (local ABCs for the cylinder) is different in

nature to the one on Figure 3.5(a) (global ABCs for the airfoil) because in the latter case we do recover the

optimal convergence rate and lose it only toward the end of the computation, when the residuals are already

sufficiently small, and in the former case the convergence is suboptimal from the very beginning.

The phenomenon of "flattening" of the residuals for global ABCs, see Figure 3.5(a), can apparently

be attributed to the following. The boundary conditions have actually been constructed on the conformal

plane _, where the body is always a cylinder and the grid is always exactly polar, which, in particular,
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meansorthogonal.In Sections2.1and2.2.1wehaveaddressedthe importanceof maintainingtheexact
conservationonthegridfromthestandpointof solvabilityandalsoshown(seeequations(2.40)and(2.43))
howto maintaintheexactconservationonthisparticulargrid,i.e.,gridofpolarcoordinates.Fortheflow
aroundtheairfoilthediscretizationis built directlyusingfinitevolumesontheactualgridin thephysical
plane.Forsmalldomains,thisgridmayhaveslightnumericaldeviationsfromorthogonalityevennearthe
outerboundary.This,in turn, resultsin a slightlydifferentdiscreteoperator.(Ashasbeenmentionedin
Section2.2.1,in contrastto (2.28)it maycontaindiagonalnodeswithsmallcoefficients.)Thismaygiverise
to aminorviolationoftheoverallconservationonthegrid,thesmallerthedomain,thelargertheviolation.
(Indeed,the left-handsideof (2.40)and(2.43)hasto havethis particularformto beincorporatedinto
theboundaryconditions,andtheconservationwill nowbeachievedwitha differentoperator.)Thissmall
"incompatibility"is responsiblefor theflatteningofthe convergencehistorycurve(i.e.,residuallevelvs.
numberof multigridcycles,seeFigure3.5(a)).A similarphenomenonwasobservedin [13]whensolvinga
Neumannproblem,for whichthesolvabilityconditionwassatisfiedexactlyfor thecontinuousformulation,
whileonlyupto thetruncationerrorlevelforthediscreteformulation.

3.4. Solving the Euler system. Let us first note that in the framework of the full Euler system we

are computing only the flow around the airfoil. The cylinder case analyzed in Section 3.3 can, in fact, be

used only for the pure pressure computations. It is not suitable for the full Euler equations because the

artificial dissipation of the scheme will result in flow separation. This effect is, again, due to the "thickness"

of the cylinder.

In Figure 3.7 we present convergence histories on all grids for all three types of the ABCs. As one can

see, the convergence in all cases is somewhat slower than the theoretically predicted rate of 0.125 per one

W(2,1) cycle that we use. The slowdown of the multigrid convergence that we observe here is obviously

not related to the treatment of the artificial external boundary because it takes place for all three types

of the ABCs. As mentioned in Section 3.2, this slowdown is most likely related to the apparently invalid

omission of subprincipal terms near the stagnation point in the construction of the relaxation scheme. This

issue is discussed in [16]. We also emphasize that for the local ABCs, see Figure 3.7(c), the convergence

is noticeably slower than for the other two types, see Figures 3.7(a) and 3.7(b), and for the smallest grid

129 x 9 the solution with local ABCs does not converge at all. That's why we have only four curves (as

opposed to five) plotted on Figure 3.7(c).

In Figure 3.8 and 3.9, we are showing the surface pressure error profiles for all five grids and three types

of the ABCs that we have used. As has been mentioned, the solution with local ABCs on the smallest grid

129 x 9 did not converge, therefore the corresponding error curve is not available. (Note, as opposed to

Section 3.3, here we present separate error profile plots for each grid and all three types of the ABCs, i.e.,

have three curves per plot, rather than showing five curves from all five grids on one plot for each geometry

and each type of ABCs.)

Figures 3.8 and 3.9 allow one to conclude that for the exact ABCs the surface pressure error is always

below the 10 -2 level, for global ABCs it is also below than 10 -2, except for the smallest domain, for which

it is only slightly above the level of 10 -2, i.e., 1%. For local ABCs the accuracy rapidly deteriorates with

the domain size decrease and eventually reaches O(1) on the grid of moderate dimension 129 x 17 before the

solution breaks on the smallest grid 129 x 9.

As opposed to Section 3.3, here we are computing all three flow quantities rather than only pressure.

Therefore, we also compare error profiles for velocities. In Figure 3.10 we present velocity errors for the

smallest grid, on which all three solutions converged, i.e., for the grid 129 x 17. Figure 3.10(a) shows that

31



-6

-8

-10

-12

-14

Karman-Trefltz airfoil, 10 ° trailing edge angle
exact Dirichlet boundary condition for pressure and velocity

+ 129 x 129 grid
129 x 65 grid
129 x33 grid
129 x 17 grid

5 10 15

W(2,1 ) cycles

i I
20

0

-2

-4

-6

-8

-10

-12

-14

Karman-Trefltz airfoil, 1 0° trailing edge angle
global boundary condition for pressure and velocity

5 10 15

W(2,1 ) cycles

I
20

(A) Exact ABCs

0

-2

-4

-6

-8

-10

-12

-14

(e) Global ABCs

Karman-Trefltz airfoil, 10 ° trailing edge angle
local boundary condition for ,ressure and velocity

_ _ _ I _ _ _ _ I _ _ _ _ I _ _ _ _ I
5 10 15 20

W(2,1 ) cycles

(C) Local ABCs

FIC. 3.7. Convergence histories for the flow past an airfoil computed in the framework of the full Euler equations.

both the exact and global ABCs perform equally well for the surface velocity (the error is slightly above

10 -2) and the solution obtained with local ABCs substantially lacks accuracy. At the outer boundary, see

Figure 3.10(b), global ABCs provide for the error level below 10 -2, whereas local ABCs are lagging behind

by roughly two orders of magnitude.

Note, we do not present the error curve for the exact ABCs on Figure 3.10(b) because the Dirichlet data

for these boundary conditions are taken from the exact solution and thus the corresponding error would have

been identically equal to zero.

Summarizing for the full Euler airfoil case, we see that global ABCs are almost as good as the exact ones

in terms of both the solution accuracy and multigrid convergence rate. As concerns global vs. local ABCs,

from Figures 3.7, 3.8, 3.9, and 3.10 we conclude that global ABCs clearly outperform the local ones from

the standpoints of accuracy, convergence rate, and robustness. Accuracy-wise, they allow to reduce the grid
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dimension by a factor of 8-16 with no or very little increase in error and with the obvious corresponding

reduction in computational costs -- this is the primary result that we have expected. Regarding the robust-

ness, global ABCs provided for the convergence on the smallest grid 129 x 9, when the algorithm with local

ABCs simply failed to converge.
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FIG. 3.8. Surface pressure error profiles for the flow past an airfoil computed in the framework of the full Euler equations.

4. Discussion and conclusions. Motivated by the two independent successful developments in CFD

that have appeared recently: The new factorizable schemes for the equations of hydrodynamics that facilitate

the construction of optimally convergent multigrid algorithms, and highly accurate global far-field artificial

boundary conditions, we have built and tested a unified methodology for calculating incompressible flow

solutions based on the combination of the two aforementioned approaches. The primary result that we have

obtained is the following. Global ABCs do not hamper the optimal (i.e., unimprovable) multigrid convergence

rate pertinent to the solver. At the same time, contrary to the standard locM ABCs, the solution accuracy

provided by the globM ABCs deteriorates very slightly or does not deteriorate at all when the computationM

domain shrinks, which clearly translates into substantial savings of computer resources.
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FIG. 3.10. Velocity error profiles for the )flow past an airfoil computed in the framework of the full Euler equations on the

129 × 17 grid.

The combined methodology was developed for the most simple formulation of both the factorizable

scheme and the ABCs: the so-called pressure Poisson scheme, and the ABCs built semi-analytically using

the separation of variables along the artificial boundary. The methodology was tested on a class of incom-

pressible inviscid non-lifting two-dimensional flows with the exact solutions readily available through the

implementation of the classical complex variable technique. On one hand, this intentionally elementary for-

mulation (both theoretically and experimentally) allows to use the analytical approaches and results as much

as possible for both constructing the methodology and numerically assessing its performance. On the other

hand, this formulation still keeps the key fundamental principles, on which both the factorizable scheme

and global ABCs are based, and thus should be regarded not as an isolated model example but rather as a
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foundation of the future approaches to more complex problems.

In a series of numerical tests (Section 3) we have compared three types of the ABCs: Exact Dirichlet

ABCs obtained from the exact analytical solution, global ABCs, and standard local ABCs of the kind that

is used extensively and routinely nowadays when neither the exact data nor any advanced methodology is

available. From our computations we can conclude that convergence-wise, global ABCs perform practically

as good as the exact ones; in other words they recover the optimal multigrid convergence rate that cannot be

improved. From the standpoint of accuracy, they allow for a very substantial reduction of the computational

domain size, two orders of magnitude in terms of the actual diameter and at least one order of magnitude in

terms of the grid dimension, with no or very little deterioration in the final quality of the calculated solution.

This obviously yields a considerable reduction in the corresponding computational costs, which altogether

constitutes the primary result that we have expected.

The aforementioned reduction in the computational domain size is obtained when comparing the per-

formance of the global ABCs with that of the standard local boundary conditions. We should emphasize

here that as the exact ABCs are not attainable routinely, the comparative assessment of global and local

methodologies is of the foremost importance from the viewpoint of computational practice. Our numerical

experiments show that besides the solution accuracy, global ABCs clearly surpass the local ones from the

standpoints of multigrid convergence rate and robustness. (The latter point refers to the case when global

ABCs could provide for convergence while the local ones diverged.) A similar kind of behavior has been

observed previously for the global DPM-based ABCs combined with the older suboptimal multigrid method-

ologies [21, 25-2"/,30-33]. As at the moment different flavors of local boundary conditions still dominate the

area of production computations in CFD, the new combined technique developed and tested in this paper

provides a potential for creating new flow solvers far superior to those currently in use.

An important implementation lesson learned when building the unified methodology is that the inho-

mogeneities in the elliptic factor of the system have to be handled very carefully. In particular, the exact

conservation on the grid has to be strictly enforced to guarantee the solvability of the discrete problem.

Let us note that the actual inhomogeneity of the pressure Poisson equation that we have studied in this

paper is not going to be encountered in the future because the forthcoming factorizable scheme for the

incompressible case will be based on the Laplace equation for the velocity potential as an elliptic factor

(always homogeneous). On the other hand, the current study provides foundation for treating the compress-

ible flow equations, in which the full-potential part will always involve far-field inhomogeneities due to the

sub-principal terms. The boundary conditions for this equation will be the same as those we have studied

here: Neumann's boundary condition on the solid wall and requirement of boundedness of the solution at

infinity. Therefore, the conclusions of the current study, in particular those related to the solvability issues,

are going to be useful.

Our future plans involve extensions along both experimental and theoretical lines. Numerically, we will

incorporate a different formulation of the scheme and study more complex cases, including compressible

flows. Theoretically, we will try and analyze the properties of the discrete ABCs' operator (a generalization

of the operator T, see (2.35) and (2.3"/)) in terms of the influence it may exert on multigrid convergence,

e.g., whether the matrix of the corresponding overall system that is solved by iterations may appear either

symmetric positive definite or an M-matrix (see [41] for the definition of the latter). Global ABCs for

the more complex cases that we plan on studying in the future will be obtained using difference potentials

method.

35



REFERENCES

[1]E.

[2] A.

[3] A.

[4] S.

[5]D.

[6]D.

[7]D.

[8]

[9]

[10] A.

[11] A.

[12] M.

[13] D.

[14] T.

[15] T.

[16] T.

[17] D.

[18]

M. MURMAN AND J. D. COLE, Calculation of plane steady transonic flows, AIAA J., 9 (1971)

pp. 114-121.

JAMESON, W. SCHMIDT, AND E. TURKEL, Numerical simulation of the Euler equations by finite

volume method using Runge-Kutta time-stepping schemes, AIAA Paper No. 81-1259, 5th AIAA

Computational Fluid Dynamics Conference, 1981.

JAMESON, Solution of the Euler equations for two dimensional transonic flow by a multigrid method,

Appl. Math. Comput., 13 (1983) pp. 327-355.

SPEKREIJSE, Multigrid solution of monotone second-order discretization of hyperbolic conservation

laws, Math. Comp., 49 (1987), pp. 135-155.

SIDILKOVER, Numerical solution to steady-state problems with discontinuities, PhD thesis, The

Weizmann Institute of Science, Rehovot, Israel, 1989.

SIDILKOVER AND A. BRANDT, Multigrid solution to steady-state 2d conservation laws, SIAM J.

Numer. Anal., 30 (1993), pp. 249-274.

SIDILKOVER, A genuinely multidimensional upwind scheme for the compressible Euler equations,

in Proceedings of the FiRh International Conference on Hyperbolic Problems: Theory, Numerics,

Applications, J. Glimm, M. J. Graham, J. W. Grove, and B. J. Plohr, eds., World Scientific, June

1994.

--, A genuinely multidimensional upwind scheme and efficient multigrid solver for the compressible

Euler equations, ICASE Report No. 94-84, NASA Langley Research Center, Hampton, VA, USA,

1994.

--, Multidimensional upwinding and multigrid. AIAA 95-1759, June 19-22, 1995. 12th AIAA CFD

meeting, San Diego.

BRANDT, Multigrid techniques: 1984 guide with applications to fluid dynamics, The Weizmann

Institute of Science, Rehovot, Israel, 1984.

BRANDT AND I. YAVNEH, Accelerated multigrid convergence and high Reynolds recirculating flows,

SIAM J. Sci. Statist. Comput., 14 (1993), pp. 607-626.

ROSENFELD AND M. ISRAELI, Numerical solution of incompressible flows by a marching multigrid

nonlinear methods, AIAA Journal, 25 (1987), pp. 641-647.

SIDILKOVER AND U. ASCHER, A multigrid solver for the steady-state Navier-Stokes equations using

the pressure-Poisson formulation, Matematica Aplicada e Computational, 14 (1995), pp. 21-35.

W. ROBERTS, D. SIDILKOVER, AND R. C. SWANSON, Textbook Multigrid Efficiency for the Steady

Euler Equations. AIAA Paper No. 97-1949, in: 13th AIAA CFD Conference, Snowmass Village,

CO, June-July 1997, A Collection of Technical Papers, Part 2, pp. 629-636.

W. ROBERTS, R. C. SWANSON, AND D. SIDILKOVER, An Algorithm for Ideal Multigrid Convergence

for the Steady Euler Equations, Computers and Fluids, 28 (1999) pp. 427-442.

W. ROBERTS AND R. C. SWANSON, Extending Ideally Converging Multigrid Methods to Airfoil

Flows, AIAA Paper No. 99-3337, 1999, 14th AIAA CFD Conference, Norfolk, VA, June-July 1999.

SIDILKOVER, Some approaches towards constructing optimally efficient multigrid solvers for the

inviscid flow equations, Computers _z Fluids, 28 (1999), pp. 551-571.

--, Factorizable schemes for the equations of fluid flow, Report No. 99-20, ICASE, 1999. Submitted

for publication.

36



[19] --, The UHF scheme in two and three dimensions, 1999. To be submitted to SIAM J. Numer. Anal.

[20] D. SIDILKOVER, T. W. ROBERTS, AND J. L. THOMAS, The generalized coordinate formulation of the

UHF scheme, 1999. To be submitted to J. Comp. Phys.

[21] S. V. TSYNKOV, Numerical Solution of Problems on Unbounded Domains. A Review, Appl. Numer.

Math., 27 (1998) pp. 465-532.

[22] V. S. RYABEN'KII, Boundary Equations with Projections, Russian Math. Surveys, 40 (1985) pp. 147-

183.

[23] V. S. RYABEN'KII, Difference Potentials Method for Some Problems of Continuous Media Mechanics,

Nauka, Moscow, 1987. [Russian]

[24] V. S. RYABEN'KII, Difference Potentials Method and its Applications, Math. Nachr., 177 (1996) pp. 251-

264.

[25] V. S. RYABEN'KII AND S. V. TSYNKOV, Artificial Boundary Conditions for the Numerical Solution of

External Viscous Flow Problems, SIAM J. Numer. Anal., 32 (1995) pp. 1355-1389.

[26] S. V. TSYNKOV, An Application of Nonlocal External Conditions to Viscous Flow Computations, J.

Comput. Phys., 116 (1995) pp. 212-225.

[27] S. V. TSYNKOV, E. TURKEL, AND S. ABARBANEL, External Flow Computations Using Global Bound-

ary Conditions, AIAA J., 34 (1996) pp. 700-706.

[28] S. V. TSYNKOV, Artificial Boundary Conditions for Computation of Oscillating External Flows, SIAM

J. Sci. Comput., 18 (1997) pp. 1612-1656.

[29] V. S. RYABEN'KII AND S. V. TSYNKOV, An Application of the Difference Potentials Method to Solving

External Problems in CFD, In: Computational Fluid Dynamics Review 1998, M. Hafez and K.

Oshima, eds., World Scientific, Singapore, 1998, pp. 169-205.

[30] S. V. TSYNKOV AND V. N. VATSA, An Improved Treatment of External Boundary for Three-

Dimensional Flow Computations, AIAA J., 36 (1998) pp. 1998-2004.

[31] S. V. TSYNKOV, External Boundary Conditions for Three-Dimensional Problems of Computational

Aerodynamics, SIAM J. Sci. Comput., 21 (1999) pp. 166-206.

[32] S. V. TSYNKOV, On the Combined Implementation of Global Boundary Conditions with Central-

Difference Multigrid Flow Solvers, In: Proceedings of IUTAM Symposium on Computational Meth-

ods for Unbounded Domains, Boulder, CO, July 1997, Thomas L. Geers, ed., Kluwer Academic

Publishers, Dordrecht, 1998, pp. 285-294.

[33] S. TSYNKOV, S. ABARBANEL, J. NORDSTR()M, V. RYABEN'KII, AND V. VATSA, Global Artificial

Boundary Conditions for Computation of External Flow Problems with Propulsive Jets, AIAA Paper

No. 99-3351, in Collection of Technical Papers, 14th AIAA CFD Conference, Norfolk, VA, 1999,

Vol. 2, pp. 836-846; also to appear in AIAA Journal.

[34] L. FERM, Non-Reflecting Accurate Open Boundary Conditions for the Steady Euler Equations, Tech-

nical Report No. 143, Department of Scientific Computing, Uppsala University, Uppsala, Sweden,

September 14, 1992.

[35] L. FERM, Open Boundary Conditions for External Flow Problems, J. Comput. Phys., 91 (1990) pp. 55-

70.

[36] L. FERM, Modified External Boundary Conditions for the Steady Euler Equations, Technical Report

No. 153, Department of Scientific Computing, Uppsala University, Uppsala, Sweden, August 25,

1993.

[37] L. FERM, Multigrid for External Flow Problems, Technical Report, Department of Scientific Computing,

37



UppsalaUniversity,Uppsala,Sweden,September9,1993.
[38]A. BAYLISS,C. I. GOLDSTEINANDE. TURKEL,The Numerical Solution of the Helmholtz Equation

for Wave Propagation Problems in Underwater Acoustics, Computers and Mathematics with Ap-

plications, 11 (1985) pp. 655-665.

[39] J. LONCARIC, Optimal Control of Unsteady Stokes Flow around a Cylinder and the Sensor/Actuator

Placement Problem, ICASE Report No. 98-18, NASA Langley Research Center, Hampton, VA,

USA, May 1998.

[40] V. S. RYABEN'KII AND S. V. TSYNKOV, An Effective Numerical Technique for Solving a Special Class

of Ordinary Difference Equations, Appl. Numer. Math., 18 (1995) pp. 489-501.

[41] P. WESSELING, An Introduction to Multigrid Methods, John Wiley _ Sons, Chichester, 1992.

38



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 2000 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

On the combined performance of non-local artificial boundary

conditions with the new generation of advanced multigrid flow solvers

6. AUTHOR(S)

T.W. Roberts, D. Sidilkover, and S.V. Tsynkov

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-21

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210115
ICASE Report No. 2000-21

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

To be submitted to Computers and Fluids.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We develop theoretically and implement numerically a unified flow solution methodology that combines the

advantages relevant to two independent groups of methods in CFD that have recently proven successful: The

new factorizable schemes for the equations of hydrodynamics that facilitate the construction of optimally convergent

multigrid algorithms, and highly accurate global far-field artificial boundary conditions (ABCs). The primary result

that we have obtained is the following. Global ABCs do not hamper the optimal (i.e., unimprovable) multigrid
convergence rate pertinent to the solver. At the same time, contrary to the standard local ABCs, the solution

accuracy provided by the global ABCs deteriorates very slightly or does not deteriorate at all when the computational

domain shrinks, which clearly translates into substantial savings of computer resources.

14. SUBJECT TERMS

factorizable scheme, pressure-Poisson formulation, multigrid methods, compressible

flow, incompressible flow, conformal mapping, Fourier transform, mode selection,

conservation on the grid, optimal convergence rate, exact solution, error profiles

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATIOI_ 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

43

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


